A second proof of the Payne-Pólya-Weinberger conjecture
نویسندگان
چکیده
منابع مشابه
Payne-polya-weinberger Type Inequalities for Eigenvalues of Nonelliptic Operators
Let denote the Laplacian in the Euclidean space. The classic upper estimates, independent of the domain, for the gaps of eigenvalues of − , (− )2 and (− )k(k ≥ 3) were studied extensively by many mathematicians, cf. Payne, Polya and Weinberger [16], Hile and Yeh [10], Chen and Qian [2], Guo [8] etc.. The asymptotic behaviors of eigenvalues for degenerate elliptic operators were considered by Be...
متن کاملPayne - Weinberger eigenvalue estimate for wedge domains on spheres ∗
A Faber-Krahn type argument gives a sharp lower estimate for the first Dirichlet eigenvalue for subdomains of wedge domains in spheres, generalizing the inequality for the plane, found by Payne and Weinberger. An application is an alternative proof to the finiteness of a Brownian motion capture time estimate. Many lower estimates for the first Dirichlet eigenvalue of a domain stem from an inequ...
متن کاملthe impact of training on second language writing assessment: a case of raters’ biasedness
چکیده هدف اول این تحقیق بررسی تأثیر آموزش مصحح بر آموزش گیرندگان براساس پایایی نمره های آنها در پنج بخش شامل محتوا ، سازمان ، لغت ، زبان و مکانیک بود. هدف دوم این بود که بدانیم آیا تفاوتهای بین آموزشی گیرندگان زن و مرد در پایایی نمرات آنها وجود دارد. برای بررسی این موارد ، ما 90 دانشجو در سطح میانه (متوسط) که از طریق تست تعیین سطح شده بودند انتخاب شدند. بعد از آنها خواستیم که درباره دو موضوع ا...
15 صفحه اولA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1992
ISSN: 0010-3616,1432-0916
DOI: 10.1007/bf02099533